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Pulse Sequence and Characterization

arrival time

k3 LOk2k1 ks

Figure S1: The pulse sequence for the 2D electronic spectroscopy experiments. The delay
between the first two pulses, k1 and k2, defines the coherence time, τ , while the delay
between the second and third pulse, k3, is the population time, T .S1 The detected signal, ks,
is emitted following the third pulse and is detected interferometrically with an attenuated
local oscillator (LO) pulse separated by some time, t. Note that in the depicted pulse
sequence the LO arrives last, though it may instead be placed before the first excitation
pulse. The choice is somewhat arbitrary, requiring the pulses to be close enough in time
so that the produced interferogram can be resolved by the spectrograph and detector, but
adequate temporal separation is also needed so that the signal peak can be readily extracted
after the Fourier transform of the interferogram.
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(b) FROG TBP = 0.63
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(c) Duration = 13.1 fs
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Figure S2: (a) The spectrum of the compressed laser pulse. (b) FROG image obtained
from methanol in a TG-FROG configuration. (c) Analysis of the FROG signal over all
frequencies (blue), and using a Gaussian function (black) to show a pulse duration of 13.1 fs.
The time-bandwidth product (TBP) for a Gaussian pulse is ∼0.44 at the transform limit.
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Spectrometer Stability

Figure S3: (a) Interference pattern and (b) computed phase stability of the spectrometer
over a long time scale. While the short time scale data shown in the main text approximates
the duration of a single 2D scan (for a given population time, T ), the long time scale is
indicative of stability over the several hours required to collect a complete data set. Sample
was a cresyl violet solution with delays fixed so that τ = 0 fs, T = 195 fs and spectra acquired
at 2 s intervals. The oscillatory nature of the phase offset is related to air temperature
fluctuations associated with the laboratory air-conditioning.
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Phasing via Projection Slice Theorem

The phasing is performed by multiplying the rephasing and nonrephasing parts of the data
by exp(2πif3(t+∆t)+iφ), where φ = φR or −φNR ranges from 0 to 2π and is a constant phase
offset parameter for the rephasing or nonrephasing parts which compensates for small errors
in the k1 and k2 pulse timings. The ∆t parameter represents the error in the measurement
of the signal and LO separation time, t, used to correct the linear spectral phase. The value
of t is typically measured interferometrically in a separate experiment using the nonresonant
response from methanol with τ = T = 0.S2 However, if the solvent response from a sample
is large, the recorded spectrum from the data set at τ = T = 0 may also be used to estimate
t without performing an independent measurement. Determination of φR, φNR and ∆t is by
use of the projection slice theorem,S2–S4 which states that the real parts of the sum of the
rephasing and nonrephasing data, when collapsed along the excitation axis, should resemble
data collected in a pump-probe-type experiment. For the apparatus shown in Figure 1b of
the main text, the pump-probe data can be collected by blocking k1 and k3, using k2 as the
pump and the LO as the probe. A global fitting algorithm is used to find the parameters
that minimize the differences between the pump-probe and 2D projection data matrices.
Previous work has shown phasing using three parameters (two linear, one constant) gives
superior results to two (constant) parameter methods.S2,S5 In this work, we use also use
three parameters, but instead use one linear and two constant. Given that the linear phase
is determined by t, the time between the signal and LO, and that the timings of k3 and the
LO remain fixed, this choice of parameters may better physically represent the unknowns in
the phase. Identical results were obtained when phasing using two linear and one constant
parameter, or with the inclusion of an additional quadratic phase term.
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(a) Pump-probe
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(b) 2D projection
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Figure S4: Comparison of the cresyl violet (a) pump-probe experiment versus (b) the 2D
projection slice after fitting of phase parameters. A slice though a population time of T =
110 fs is indicated by the dotted lines and shown in (c). Note that the global fitting algorithm
uses the complete data matrices, with the scale and time-zero offset of the pump-probe data
being additional fitting parameters.
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Cresyl Violet Data
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Figure S5: The absorptive 2D spectra of cresyl violet at a population time of T = 110 fs
is shown in (a), and the projection onto the detection axis (red curve) is compared to the
absorption spectrum of cresyl violet (blue curve) in (b). The spectrum of the laser pulse
is indicated with the grey shaded area. The 2D spectrum is composed of the ground-state
bleach and stimulated emission signals, but note that detection is only possible where there
is sufficient laser spectral intensity.
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Figure S6: Complete view of a 2D data slice of cresyl violet at a population time of T = 110 fs
showing real, imaginary and magnitude of the total as well as separated rephasing and
nonrephasing components.
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Rotational Delay Stage Model

The rotational delay stages comprise a pair of optical flats, with the second optic required
to compensate for the beam deviation. Considering just a single piece of glass, the total
delay due to the angle of the glass is the sum of contributions from increased path through
glass, reduced path through air on the outer side of the glass pair, and increased path length
through air on the inner side:

∆t = ∆tg + ∆tout + ∆tin. (1)
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Figure S7: Diagram indicating increase in glass path and decrease in air path as glass is
rotated resulting in delay of a transmitted laser pulse.

The incident angle of the laser beam relative to the normal of the glass is θ1. By Snell’s
law, refraction angle depends on the refractive indices, n1 and n2, of the media (air and
glass) so the internal angle is

θ2 = arcsin (n1 sin(θ1)/n2) . (2)

The new path length through the glass, d1, is dependent on the internal angle and the
thickness of the glass, w, by

d1 = w/ cos θ2

= w/ cos (arcsin (n1 sin(θ1)/n2)) . (3)

The change in glass path length is ∆dg = d1 − w, thus the delay introduced due to
additional glass is

∆tg = ∆dgn2/c

= n2 (w/ cos (arcsin ((n1/n2) sin(θ1)))− w) /c, (4)

where c is the speed of light.
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The difference in path length through air on an outer side of the glass pair is

∆dout = x1 = (d2 − w)/2, (5)

so the delay introduced is

∆tout = −n1

2c
(d2 − w)

= −n1

2c
(w/ cos(θ1)− w) . (6)

By similar triangles, the difference in path length through air on an inner side of the
glass pair is

∆din = x2 = h2x1/h1. (7)

The hypotenuse lengths h1 = x1/ sin θ and h2 can also be found using similar triangles:

a = d1 sin(θ1 − θ2) (8)

and

a = (h1 + h2) sin(90− θ1) (9)

so

d1 sin(θ1 − θ2) = (h1 + h2) sin(90− θ1)
h1 + h2 = d1 sin(θ1 − θ2)/ sin(90− θ1)

= d1 sin(θ1 − θ2)/ cos(θ1)

h2 = d1 sin(θ1 − θ2)/ cos(θ1)− h1
= d1 sin(θ1 − θ2)/ cos(θ1)− x1/ sin θ. (10)

Substituting into eq 7 and simplifying gives

∆din = x2 = h2x1/h1

= d1 tan(θ1) sin(θ1 − θ2) + (w − d2)/2 (11)

and thus the delay is

∆tin =
n1

c
(d1 tan(θ1) sin(θ1 − θ2) + (w − d2)/2) (12)

Note that this is an idealised model and thus does not account for real-world effects such
as glass surface roughness. See the main text for discussion of calibration method required
to achieve the accuracy required for the 2D spectroscopy experiments.
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Comparison of Delay Components for Rotating Optical

Flats versus Translating Wedges
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(b) Translating wedges
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Figure S8: The total delay for both (a) the rotating optical flats and (b) translating wedges
is dependent on the increase in effective glass thickness and accompanying change in path
through air. In (a), the total delay (eq 1) as a function of glass rotation angle is shown,
along with its glass and air contributions (eqs 4, 6 and 12). Note that because of the beam
path deviation between the two optical flats, there is a component of increased path through
air (green curve) which contributes positively to the total delay. In (b), the increased glass
path of the translating wedge design is always accompanied by an equal decrease in air path,
and the delay is entirely due to the different refractive indices of the two media. Panel (c)
shows the increase in glass path length as a function of total programmed delay time (black
curves in a and b) for rotating optical flats and translating wedges. The rotating optical flats
require a shorter path through glass for the same total delay as translating wedges, which
results in reduced spectral dispersion. Modeling is based on fused silica (n = 1.46), using a
pair of 1 mm optical flats or wedges cut at 1◦. Changing the thickness or cut angle changes
the y-axis scale, but not the curve shapes.
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Laser Transmission versus Optical Flat Angle

The transmission of the laser beams through the optical flats varies with angle according to
the Fresnel equations.S6 Transmission of a p-polarized beam through a single interface as a
function of angle is given by

Tp(θ, n1, n2) = 1−

∣∣∣∣∣n1

√
1−

(
n1

n2
sin θ

)2
− n2 cos θ

n1

√
1−

(
n1

n2
sin θ

)2
+ n2 cos θ

∣∣∣∣∣
2

, (13)

and for an s-polarized beam

Ts(θ, n1, n2) = 1−

∣∣∣∣∣n1 cos θ − n2

√
1−

(
n1

n2
sin θ

)2
n1 cos θ + n2

√
1−

(
n1

n2
sin θ

)2
∣∣∣∣∣
2

, (14)

where n1 or n2 are the refractive indices of the initial or final medium, and θ is the angle of
incidence.

For the first (air–glass) interface of a fused silica optical flat, n1 = nair ≈ 1, n2 = nglass =
1.46 and θ is the rotation angle of the optical flat. For the second (glass–air) interface, Snell’s
law gives the the internal angle of incidence as

θ2 = arcsin

(
n1

n2

sin θ

)
. (15)

The transmission through a single optical flat is thus

T2(θ) = T (θ, nair, nglass)T (θ2, nglass, nair), (16)

and for a pair of optical flats
T4(θ) = T2(θ)

2, (17)

where T is given by eq 13 or 14 for the appropriate polarization.
The intensity of the transmitted light as a function of optical flat rotation angle was

measured for both the p-polarized k1 and s-polarized k2 beams (see Figure 1b of the main
text) and found to match that predicted by eq 17, as shown in Figure S9. As the the
pump-probe signal is linearly dependent on excitation intensity, eq 17 can be applied to the
pump-probe data to correct for the variation in transmission with optical flat rotation.

In the 2D experiment, the third-order response is measured, thus the signal is dependent
on the product of laser beam intensities. For this reason, the opposing effects of the p and
s polarizations with optical flat rotation cause a minimal effect on the third-order signal
intensity, with a 5% difference across the full delay range of 0–550 fs (using a ∼40◦ rotation),
as shown as the black curve in Figure S9.
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Figure S9: The measured laser beam transmission as a function of optical flat rotation angle
for the p-polarized k1 and s-polarized k1 beams, with comparisons to theoretical transmission
values given by eq 17 for p- or s-polarized light. The relative change in intensity of the third-
order signal given by the product of the relative changes in laser beam intensities is indicated
with the black curve.
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Spectral Dispersion Measured via Interferometry
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Figure S10: (a) Segment of a spectral interference pattern used to construct a delay-to-angle
calibration curve. The analysis procedure gives a curve for each detection wavelength where
there is sufficient intensity, allowing direct measurement of the spectral dispersion as the
optical path length through glass is increased. (b) Measured optical delay as a function of
rotation angle of the optical flats at three wavelengths corresponding to the blue edge, peak,
and red edge of the laser spectrum, indicated by the dashed lines in (a). In this configuration,
spectral dispersion due to the changing glass path results in a ±0.1% error in delay time
across the full rotation range.
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Beam Displacement using Rotating Optical Flats versus

Translating Wedges

The beam displacement, x, after passing through wedges cut at angle, φ, separated by
distance, d is

x =
d tan(arcsin(n2 sin(φ)/n1)− φ)

1− tan(φ) tan(arcsin(n2 sin(φ)/n1)− φ)
, (18)

where n1 and n2 are the refractive indices of air and the glass, respectively.

x
d

(a) (b)

Figure S11: Using rotating optical flats (a), the beam displacement caused by passing
through the first optic varies with rotation angle, θ, but is compensated with the second
optic, resulting in no net change in the beam position. With translating wedges (b), the
wedge angle, φ, and separation distance, d, must be kept small to minimize the final beam
displacement, x.
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Figure S12: Beam displacement through wedges as a function of wedge angle and separation
distance.
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